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How to mesh up Ewald sums. Il. An accurate error estimate
for the particle—particle—particle-mesh algorithm

Markus Deserno and Christian Holm
Max-Planck-Institut fu Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany
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We construct an accurate estimate for the root mean square force error of the particle—particle—
particle mesh(P*M) algorithm by extending a single particle pair error measure which has been
given by Hockney and Eastwood. We also derive an easy to use analytic approximation to the error
formula. This allows a straightforward and precise determination of the optimal splitting parameter
(as a function of system specifications antMPparametersand hence knowledge of the force
accuracy prior to the actual simulation. The high quality of the estimate is demonstrated in several
examples. ©1998 American Institute of Physids$S0021-960608)51642-X

INTRODUCTION L. Employing the Ewald sum, the forde on particlei,
The combination of periodic boundary conditions andWhich results from all interactions with the other charges

long range interactions is a frequent difficulty encountered irfincluding all periodic imaggs can be written in the follow-
computer simulations of physical systems, and the ingeniou$'d Way-

summation technique connected with the name of Etvald
has become a standard instrument for tackling this problem.

However, it has long been realized that for rather extensiv%_h lled | Fouri d diool rib
simulations(involving, e.g., many particleghis approach is . € so-called real space, Fourier space and dipole contribu-
tions are, respectively, given by

still too time consuming and various alternative methods
have been invented. One particular class of these new algo- ,
rithms owes its speedup to an inspired replacement of the Ffr)ZQi; q; 2

Fi= FO L F0 4 O @

2a

exp(— a?[r;+mL|?)

Fourier transformation — which lies at the heart of the me7 \/;

Ewald technique — by fast Fourier transforiFT)

routines>™* erfoalrjj+mL[)| ry;+mL 2
In paper | on mesh based Ewald sim& presented a |rij+mL]| |rjj+mL|?’ @

unified view of these FFT accelerated methods and carried

out detailed accuracy measurements. However, since all g Ak 2

these algorithms contain various free parameters, working at Fi“‘):—'3 q; > — exp( - _2> sin(k-r;;), 3

the maximally obtainable accuracy requires the user to tune L™ S 4a

them very carefully. This is straightforward if there exists a

theoretical estimate of the errors involved — as is the case (d)_ 417q;

for the standard Ewald stfras well as for the so-called == m : ajr - (4)

particle mesh EwaldPME) method — but rather tedious

otherwise. The prime on the second sum in H@) indicates that foi

In this paper we present such an estimate for the rookj the term m=0 has to be omitted, erfc)
mean square error in the force of the so-called particle—:=27771/2f:°dt exp(-t?) is the complementary error function
particle—particle meshP°M) algorithm by extending an ang of course;;=r;—r;. Furthermore, the inverse length
error measure already derived by Hockney and Eastfvoods the splitting parametemf the Ewald sum, which controls
and additionally provide an easy to use analytical approxithe relative importance of the contributions coming from real
mation to the somewhat unwieldy expression comprisingand reciprocal space, thevectors are from the discrete set
various sums. (27/L)7% and €' is the dielectric constant of the medium,
which surrounds the cluster of simulation boxes as it tends
(in a spherical waytoward an infinite system. In practice,
the infinite sums in Eqs(2) and (3) are truncated by only

In this section we outline for reference purposes thetaking into account distances which are smaller than some
most important formulas for the3®l method without much real space cutoff ., and wave vectors with a modulus
explanation, derivation or motivation. For details the readesmaller than some reciprocal space cutqff.
is referred to the original ¥ literature’ as well as paper . The PM method offers a fast way for an approximate

Consider a system dfl particles with charges; at po- computation of the reciprocal space contributi(8). By
sitionsr; in an overall neutral cubic simulation box of length mapping the system onto a mesh, the necessary Fourier

EWALD SUM AND P3M IN A NUTSHELL
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transformations can be accomplished by fast Fourier rou-

tines. At the same time the simple Coulomb Green function Fi:qirZEM E(rp)W(ri—rp). (11
41/k? is adjusted as to make the result of the mesh calcula- P
tion most closely resemble the continuum solution. Hereby the sum extends over the complete mésh

The first step, i.e., generating the mesh based charge Although the presented formuld$)—(11) look some-
density pyy (defined at the mesh points), is carried out what complicated, it is rather easy to implement them step by
with the help of a charge assignment functidh step. Furthermore, due to the replacement of the Fourier

transforms by FFT routindsee Eq(7)], the algorithm is not
18 only fast but its CPU time shows a favorable scaling with
pm(rp)= ﬁzl qW(rp=ri). (3 particle number: If the real space cutoff, is chosen small
enough[so that the real space contributi¢®) can be calcu-
Hereh is the mesh spacing, and the number of mesh pointtated in orderN], the complete algorithm is essentially of
Ny =L/h along each direction should preferably be a powerorderN log N.
of two, since in this case the FFT is most efficient. The
charge assignment function is classified according to its orsCALING OF THE rms FORCE ERROR
derP, i.e., between how many grid points — per coordinate
direction — each charge is distributed. In th&MPmethod
introduced by Hockney and Eastwddits Fourier transform

In this section we address the dependence of the root
mean square error in the force on the number of charged
particles and their valence. Since the assumptions and argu-
ments involved are of a rather general nature, the result is not

(1 (1 (1 P specific to a certain kind of Ewald method.
, sin 5 k«h| sin| Skyh| sin| Skzh We define the rms error in the force to be
Wik=n*| — : : . - -
skd o Skho Skh AF= N2 F-FP9?=\[{Z (AR, (12

(6)
whereF; is the force on particle calculated by the algorithm

In a SeCO“O_' step the mesh bé‘se‘?' electric ,fﬁl[_ip) 'S under investigation an&®?is the exactforce on that par-
calculated.. Basmally, the electric flgld is the derlvatlve' of theyiie Note that this is by no means the only interesting mea-
electrostatic potential, but there exist several alternatives f°§ure of accuracy. However, it is the only one which is con-

implementing the differentiation on a lattiédn this paper
we will restrict ourselves to the case df-differentiation
which works by multiplying the Fourier transformed poten-
tial with ik. In this caseE(rp) can be written as

sidered in this paper.
We now assume that the error in the force on particle
can be written as

- Z 2 AF,=q; CXGi - 13
E(rp)=FFT —ikXFFT py]X Gl (rp). @) i q';i 9i Xi 13
In other words,E(r,) is the backwardfinite Fourier trans-  The idea behind this ansatz is that — just as it is trueFor
form of the product of- ik, theforward finite Fourier trans- — the error in F; originates from theN—1 interactions of
form of the mesh based charge density and the so-called particlei with the other charged particles, and each contribu-
optimal influence functior{sopt, given by tion should be proportional to the product of the two charges

involved. The vectoy;; gives the direction and magnitude of

~ ~ 0 27 \o 2 this error for two unit charges and depends on their separa-
D(k)- 223 U= k+ Hm R k+ Hm tion and orientation as well as on the specific algorithm used
éop[( k)= me > , for calculating the electrostatic forces. For this term we fur-
|5(k)|2[ ORIV k+2—wm) ther assume
3 h
me? {xij~Xik) = S X)) =1 8 X2, (14

)

where averaging over the particle configurations is denoted
by the angular brackets. The underlying assumption that con-
tributions from different particles are uncorrelated is cer-
R(K) = — i k— g~ k14a® (9) tainly not always true(think, e.g., of highly ordered or
strongly inhomogeneous particle distributipnisut it is sen-
sible for randomsystems. Obviously, the ten(rxizj) — the
mean square force error for two unit charges — can no
U (k) :=W(k)/h3. (10) longer depend om andj and is thus written ag?. Using
Egs.(13) and(14), it follows
Here D(k) is the Fourier transform of the employed differ-

and

entiation operator, which is simplik in our case. Finally, (AFH=072 > ajai{xij Xy ~0f x* Q2 (19
one arrives at the force on partidlgi.e., the replacement of J#1 ke
Eq. (3): where the important quantit@  is defined as
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N up to a factorL 3 this expression is just the mean square
Q2:=E qu. (16 error in the force for two unit charges, in other words, the
=1 quantity x> from Eq. (14). This provides a link between
Not all particles necessarily have the same charge. Morthe rms error of arN particle system and the err@ from
specifically, let there b® subsetsY,, defined by the condi- Hockney and Eastwood: Using EQ.9) one obtains
tion that all|Ny| particles from the subsét, have the same
chargec,. If [Ny[>1, the law of large numbetsand Eq. AF~02 Q 21)

(15) gives NL3

1 B 5 2 2 2 Technically spoken(Q is a functional of the influence

mgp (AF)Z=((AF)Dien,~Cp X" Q% A7 function, and by setting the functional derivative @fwith
respect toG to zero Hockney and Eastwood were able to

derive the optimal influence function from E@). However,
it is most important to realize that they also provide a closed

expression for the corresponding “optimal errorQgy,

i.e., the arithmetic meanof the (AF;)? for all particlesi

e\, can be approximated by trensemble averagi®er one
particle fromN,. In the case wherall |N,| are large, it
follows

:Q[éopt]:
13 , o N1 ,
52 (AF)?=2 = = > (AF)
N|:1 p=1 N |Np||eNp 2
1 ~ 2
2Q2 P ) 2Q4 Qopt:F EA 23 R k+?m
~y2— N |c2= y2—. 18 keM [ meZ
Inserting this into Eq(12) gives the final relation 2
~ ~ 27\~ 2
2 D(k) 2 U2 k+Tm R* k-I—Tm
73
AF~y—. (19 _ meZ
\/N ~ ~ 2 2
. . . . ID(k)[Z > 0% k+-—m
Thus, the scaling of the rms error in the force with particle me 73 h

number and valence is given by the fac®fN 2, whereas

the prefactory — which cannot be obtained by such simple (22)
arguments — contains the details of the method. Indeed, th€he outer sum extends over dtvectors of the Fourier
estimates for the real and reciprocal space error of the stafransformed meshl, and the star denotes complex conjuga-
dard Ewald sufhas well as the estimate for the reciprocal tion. Once again, in the special casd kfdifferentiation one
space error of the PME methbdre exactly of the forng19). hasD(k) =ik.

Note that any information on the valence distribution enters Admittedly, Eq.(22) looks rather complicated. Still, in

2
only through the value o@°. combination with Eq(21) it gives the rms force error of the
P>M method (or — more precisely — of its Fourier space

THE ERROR MEASURE OF contribution! (After all, the computation 0Q,; and that of

HOCKNEY AND EASTWOOD éopt are quite similap. We would like to emphasize that the

The most interesting ingredient of th method is the ~ formula(22) for the optimalQ valuefjust like the one for the
optimal influence function from Eq(8). It is constructed Optimal influence functior8)] is of a very general nature: It
such that the result of the mesh calculation is as close adoes also work for different charge assignment functions,
possible to the solution of the original continuum problem.reference forces or anyNdifferentiation scheme which can be
Of course, this is only realizable in a quantitative way, if theexpressed by an operatb(k), in particular for all the finite
notion of “as close as possible” is stated more precisely.difference schemes presented in paper .

Hockney and Eastwood define the following measure of the  The corresponding rms error in the force from the real

error involved in a PM calculation: space contribution(2) has been derived by Kolafa and
Perrani and we want to provide it here for reference pur-
1 3 3 2 poses:
Q= | &ra | (FrIF(rir) —RMT? (20) -
h L
viok
. i i ibuti . AR~ ——exp—a’r2,). 23
F(r;r,) is the Fourier space contribution of the force be \/W n( ma (23

tween two unit charges at positiong andr,+r as calcu-

lated by the PM method(note that due to broken rotational With these two estimates at hand it is easy to determine the
and translational symmetry this does in fact depend on theptimal value of the splitting parametervia a stand-alone
coordinates oboth particles, andR(r) is the corresponding program, which takes the relevant system parametirs (
exact reference forcpvhose Fourier transform is just Eq. Q2, L) and specifications of the algorithm,{,,, Ny , P) as

(9)]. The inner integral over scans all particle separations, its input. If real and reciprocal space contribution to the er-
whereas the outer integral over averages over all possible ror, AF(") andAF®, respectively, are assumed to be statis-
locations of the first particle within a mesh cell. Obviously, tically independent, the total error is given by

Downloaded 22 Apr 2005 to 134.253.26.9. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. Chem. Phys., Vol. 109, No. 18, 8 November 1998 M. Deserno and C. Holm 7697

TABLE |. Expansion coefficients‘nf’) for the functionsf® from Eqs.(26) and (29) as needed in Eq30).

P P cf? e e e cP e
1 2
3
2 2 8
15 189
3 4 2 8
945 225 1485
4 2 16 5528 32
4725 10395 3869775 42525
5 4 2764 8 7234 350 936
93555 11 609 325 25515 32531625 3206852775
6 2764 16 7234 1 403 744 1 396 888 2 485 856
638512 875 467775 119282625 25196700375 40521009375 152506 344 375
7 8 7234 701872 2793776 1242928 1890912728 21053792

18243225 1550674125 65511420975 225759909375 132172165125 352985880121875 8533724574375

AF=J(AFD) 21+ (AF®)2, (24)  with the functionf(” defined as
This quantity has to be minimized with respectdo How- X~ 4P
ever, in most cases it is accurate enough to use the following  {(P)(x):= 5. (26)
approximation: Determine the value af at which the real > (X+m7T)2P>
and reciprocal space contribution to the rms force error are meZ
equal.

In a second step the aliasing sum in the denominator of Eq.

ANALYTIC APPROXIMATION (26) is evaluated analytically by exploiting the following

, partial fraction expansioh:
Although the closed expression for the error from the

last section is not reallcomplicated it is somewhatun-
wieldy. A possible calculation of the optimal value afus- sin2(x)= >, (x+mm)"2, xeR\7Z (27
ing, e.g., a bisection method needs several computations of me?
Qopt @nd for each it is necessary to compute the inner aIiasD
ing sums and the outer sum over the@ectors. Especially for
large Fourier meshes this can be rather time consuming. 1 42P-2
Therefore we now derive an analytic approximation to this > (x4+mas)~2P= sin4(x). (28
error estimate, which is essentially axpansion for small meZ (2P—1)! gx2P-2
ha. We will restrict ourselves to the case of a cubic system
and the same numbét,, of mesh points along each direc- This equation leads to a closed expression for the function
tion. Also, we will only treat the case dk-differentiation f(®) from Eq. (26):
[see Eq.(7)], since we foundlthat this is the most accurate
method. However, our line of reasoning can be extended to
more general cases.

We start our treatment of EqR2) by observing that two

of the three sums over® contain R with its exponential Unfortunately the sum ovefl is still too complicated to
factor exp(-k?/4a?). Since near the boundary 8f its value perform, so some further approximations are necessary. We
is roughly given by expt(m/ha)?), R is strongly damped choose the following Wayf.(P) ispexpanded in a Taylor series
outsidelll if he is small. Thus, it is a good approximation to u(%)to order 4£—2. Since(i) f" s an even function(ii)
retain only the term witm=0 in these two sums. Inserting fZP(O)_=1 and (iii) the lowest nontrivial term is of order
D(k)=ik, the Fourier transform of the charge assignmenlX , this expansion can be written as
function from Eq.(5) and using the fact that Sigx+nm) P—1
=sir?(x) for integraln, one obtains f<p>(x)%f<TP>(X) =1—x2P z Cﬁnp) x2M (30)

m=0

(47)2 o~ Ki2a?
L3 Z‘M K2 The coefficient( are easily determined with the help of
any mathematical computer program capable of symbolic al-
L1 s KD o[ kP ey K (o5  9ebra and are listed in Table I. The term in curly brackets
2 2 2 from Eq. (25 can now be approximated as follows:

ifferentiating this expressionR—2 times gives

FP) 0= [<2P—1>!]2( oPP -2

-2
ar TR sin‘z(x)> : (29)

Qopt%
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TABLE II. Expansion coefficienta{? from Eq. (37).

p ) aP aP ) P a al

1 2
3
2 1 5
50 294
3 1 7 21
588 1440 3872
4 1 3 7601 143
4320 1936 2271360 28800
5 1 7601 143 517 231 106 640 677
23232 13628160 69 120 106 536 960 11737571328
6 691 13 47021 9 694 607 733191589 326190917
68 140 800 57 600 35512 320 2 095 994 880 59 609 088 000 11700 633 600
7 1 3617 745 739 56 399 353 25091 609 1 755 948 832 039 4 887 769 399
345 600 35512320 838397 952 12 773376 000 1 560 084 480 36 229939200000 37838389248
(P) k/h 5
~f ( ) (7f ( ) Qopr= V2 a (ha)?® 2, &’ (ha)? (36
( f<p>(_h n 1_f<p)(@ +(1_f<p)(@)). with the abbreviation
2 ! 2 ' 2 2(P+ i
(31) ag’):zlzw 2(P+m) C(P (37)
2(P+m)+1

The product of the three functiori§” is computed by mul- . o . .
tiplying their Taylor expansions term by term, but the results Cqmbmlng thls V\.”th Eq.(21) regults in the f°"9""”.‘9
are only retained up to the truncation ordd?-42. Note that analytical approximation to the Fom_mer‘space contribution to
the first neglected cross term would be of ordé&. 4 the rms force error of the’R1 algorithm:

For symmetry reasons it is clear that all three terms in op
the last line of Eq.31) contribute in the same way to the AF~ — \/_\/_772 aP(ha)2m (39
value of the sum in Eq25), therefore it suffices to choose m=0
one of them, e.g., the term, and multiply the result by 3.
Together with the definition of{”) from Eq. (30) this leads

The exact expansion coefficients”) (which are rational
number$ are listed in Table II.

o Let us repeat that E438) was derived under the explicit
2 —k?/2a?P~1 2(P+m) assumption thata is small. Both, the restriction to the term
(4) e (P) k,h _ :
Qopr=3 3 z 5 2 > (32 m=0 for two sums in Eq(22) as well as the expansion of
L® kem k® m=o the functionf(®) from Egs.(26) and (29) in powers ofha
Finally, the sum is replaced by an integral via can become questionablefitx becomes large. However, in.
this case it is still safe to go back to the original error esti-
2m\3 3 mate, i.e., the combination of EgR1) and(22).
— — | d°k. (33

If one extends the range of integrationitd and changes to
spherical polar coordinates, the remaining angular and radidfUMERICAL TEST

integrals can be performed with the help of In this section we demonstrate the accuracy of thd P

error estimates by comparing their predictions with the exact

J dd sin® cog" 9= oyl "€ N (34  rms force erroAF from Eq.(12) — calculated for a specific
0 random system. Hereby the exact foréesheeded for com-
and puting AF are obtained by a well converged standard Ewald
sum, and for the test system we choose the one described in
S Jm(2n—1)1! Appendix D of paper I: 100 particles randomly distributed
f dx T oner neN (39 within a cubic box of length_=10, half of them carry a

positive, the other half a negative unit charge. Our unit con-
where (h—1)!1=1.3.5...(2n—1). Collecting all parts ventions are as follows:lengths are measured i and
together gives charges inC. Hence the unit of force i€%/£2. We will
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FIG. 1. The rms erroiAF (solid lineg for the system of 100 randomly FIG. 3. AF (solid .Iine§) for th_e same system as i_n the previous _figures is
distributed charges is calculated for tHedifferentiated BM method with  calculated for theik-differentiated PM method with charge assignment
Ny =32 mesh points and real space cutgff,= 4. From top to bottom the ~ °rderP=3 and real space cutoff,,,= 4. From top to bottom the number of
order of the charge assignment function is increased from 1 to 7. The dotte@€Sh points varies like 4, 8, 16, 32, 64, 128. The dotted lines are the
lines are the corresponding full estimafesing Eqs(21) and (22)] for the ~ corresponding full error estimates.

Fourier space contribution taF.

€{4,8,16,32,64,128 Figures 3 and 4 showF in compari-

refer to the estimate which emerges from combining Egsson with the full and the approximated error estimate, re-
(21 and (22) as thefull estimateand to Eq.(38) as the spectively. Again, it can be seen that the former very accu-
analytical approximation rately gives the Fourier space contribution foF. As

In a first example we fix the number of mesh points toexpected, the analytical approximation has problems at small
Ny=32 and the real space cutoff 1q,,,=4. The charge N,, (since this results in large), but nevertheless it is very
assignment order varies frofi=1 throughP=7. In Fig. 1  useful otherwise. Essentially, one has to check the value of
the resulting curves for the rms force errdF are plotted  he: If this is of the order unity or even larger, care is called
together with the full error estimate and in Fig. 2 the same ifor. Note that in Fig. 4 the value dfa is approximately 1 at
done for the analytical approximation. It can be seen veryhe points where the analytical approximation starts to devi-
clearly that the full estimate accurately predicts the Fourieate from the true curve.
space contribution tAF for all values ofa andP. Since the In a next step we want to demonstrate that the scaling of
real space contribution is also knofsee also Eq(23)],  the rms force error with particle number and valence distri-
this permits an easy determination of the optimal value of théyution is in fact correctly given bAF=Q2N~2 To this
splitting parameterr. The analytical approximation is al- end we investigate three systems which diféetly in the
most as accurate as the full formula, however, for ldPge  values ofQ2 andN. The first system is the same as the one
diminishes in accuracy if gets large. This is due to the fact investigated so far in Figs. 1—4. A second system contains
that Eq.(38) was derived under the assumption thai is 200 particles, namely, 50 monovalent and 50 trivalent pairs.
small. Note that the expansion coefficiersts) needed in Finally, a third system contains 400 particles: 50 pairs with
Eqg. (38) strongly increase with increasing if P gets larger charge =1, 100 pairs with charge-5 and 50 pairs with
(see Table I. Still, both estimates are useful for determining charge +7. Hence, their Q2,N) values are, respectively,
the optimal operation point, and E(88) can be calculated given by (100,100, (1000,200 and (10 000,400, and the
much faster than the sums from EG2). ratio of their scaling prefactors is thus i50:50. In Fig. 5

Next we study at fixed charge assignment orBer 3 this is clearly visible in the constant shift of the three curves
different mesh sizesh=L/N,, by investigating Ny  with respect to one anothénote that the vertical scale is

10°
-1
= 10
<3
S~ 1072
=
1073
9
4 10—4
s r R 10_5 K oy .~
0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
a [£7Y o [£7Y
FIG. 2. The same plot as in Fig. 1, but here the dotted lines are the analytFIG. 4. The same plot as in Fig. 3, but here the dotted lines are the analyti-
cal estimates from Ed38). Note that for largeP the errorAF is overesti- cal estimates from Eq38). At small Ny, , which corresponds to large val-
mated at large values af. ues ofh=L/Ny , the error formula overestimatés- at large values of.
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L 0 XA ] ] ] 1 L
0 05 1 15 . 2 25 3 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8
a [£7) r/L

FIG. 5. Test of theQ °N™** scaling ofAF. The three solid lines show the  Fig, 6. Measured relative frequenpyr/L) for the scaled minimum image
rms force erroAF for systems, which differ in their@ “,N) values. From  geparatiorr/L between two charges of the polyelectrolyte system described

top to bottom they are characterized %0 000,400, (1000,200 and  jj the text(the solid line. For comparison, the probability densityriL for
(100,100 (the last system is the same as the one in Figs,).1H#e dotted a random system is also shouthe dashed line

curves are the corresponding full error estimates.

logarithmig. Also shown is the full error estimate, which ferences are indeed very pronounced. Apart from the more

again predicts the Fourier space contributionAtB in all complicated structurg of the measured curve, note in particu-

three cases very precisely. lar that small separations are more frequent at the expense of
larger ones.

APPLICATION TO AN INHOMOGENEOUS For this system.we callculated the rms force emo_?

POLYELECTROLYTE SYSTEM and the corresponding estimates for the real and reciprocal

space contributiofEgs. (23), (21), (22)]. Since the simula-

So far we have only used homogeneous random systemipn box comprises 288 monovalent and 96 trivalent charges,
for testing the error estimates. However, this does not necesye haveN =384 andQ=1152. The result is shown in Fig. 7.
sarily reflect the situation encountered in all computer ex-No longer do the estimates correctly predict the two branches
periments. In the present section we want to show that deof AF. Rather, at small values of the algorithm gives
viations from a random distribution, as they frequently occurpetter results than expected from E@3), while at large
in charged systems, in fact have a noticeable influence on thgalues ofe the estimated\F is smaller than the actual one.
rms error. However, this trend can be explained qualitatively in the

We will use a typical system from our own research tofollowing way: At small values ofx the force(and also its
demonstrate this effect: a simple model of a polyelectrolytesrron is dominated by the real space contribution from Eq.
solution!®'* 106 Lennard—Jones particles were join@y  (2). This error originates from neglected contributions be-
some bonding potentiato build up a polymer chain. Every yond the real space cutaff,,,. In the case of Fig. 7 we used
third “monomer” was monovalently charged and 8 suchr__ /L. ~0.243 and from Fig. 6 it can be seen that there are
chains together with 96 trivalent and oppositely chargednore particles within this cutoffand thus less beyondhan
counterions, which make the complete system electricallyn the case of a random particle distribution, which should
neutral, were put in a cubic simulation box of length |ead to an enhanced real space accuracy. On the other hand,

~179. The system was brought into the canonical state bye demonstrated previouslgee Fig. 7 of paper | that the
means of a molecular dynamics simulation and a Langevin

thermostat.

Under certain circumstance®.g., at sufficiently low
temperature and the appropriate density rargeh poly-
electrolyte chains collapse, and this happened to the de-
scribed system. The chain sizes shrunk to much smaller val-
ues than for comparable neutral polymers and 90% of the
counterions were condensed within a distance of only two
Lennard-Jones radii from the nearest chain.

The various phenomena leading to this transition, the
influence of the system parameters or the dynamics are only \ X | |
a few of the interesting physical questions. However, the '

. . . 0 0.05 0.1 0.15 0.2
only thing which concerns us here is the fact that after the o (L7
transition the system has developed local inhomogeneities.
To demonstrate this we have plotted in Fig. 6 the measurediG. 7. rms force erroAF for the polyelectrolyte system described in the
relative frequency(r/L) of the scaledninimum image dis- text(the solid ling. The dotted curve is the full3™ estimate for the recip-

. ; i« rocal space contribution, the dashed curve is the estimate for the real space
tance L [0’\/5/2] between two Charge(SNe did not dis contribution. Note that due to the strong inhomogeneities in the charge

tinguish be_tween di_fferent valengeand compared this t_o distribution (see Fig. 6 both estimates show systematic deviations from the
the probability density of /L for a random system. The dif- true error curve.
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rms error of the PM method strongly increases with de- In paper | we showed that thik-differentiated PM
creasing minimum image distance. The general shift towardnethod is the most accurate algorithm for the FFT acceler-
smallerr, which can be observed in the polyelectrolyte sys-ated Ewald sum.In combination with the error estimates
tem, should thus lead to an enlarged reciprocal space errdhis gives a “package” for calculating electrostatic interac-
Observable effects will occur at large valuessgfwhere this ~ tions in periodic boundary conditions which is easy to use,
contribution toAF dominates. very precise, produces known and controllable errors and can
Although the systematic deviations of the error estimatehus be optimally tuned in advance. If one wishes to rely on
from the true curve are easily detectable, they are less drdbe discrete differentiation operatorhe full error formula
matic than one could have guessed from a brief look at Fig(21) and (22) will still work. It is only in the case of the
6. The optimal splitting parameter from Fig. 7 is given by analytic differentiation scherfi¢ghat none of the present error
aop=0.0715 with a correspondingF ,,~1.2x 1075, while ~ estimates is applicable.
the intersection point of real and reciprocal space estimate AS a last point, we stressed several times that the validity
occurs ate~0.0740, which predicts an error dfF~9.3  of the error estimates is subject to some additional require-
X107 7. If the estimated value ofr had been used, this ments, concerning, e.g., the homogeneity of the system. Nev-
would result in an error cAF~1.5x 108, which is roughly ~ ertheless, it should be obvious that in any case a consultation
25% larger than at the optimal value af If such a safety Of the error formulas — perhaps only for a first starting point
margin is considered already at the beginning, ahgriori ~ — is superior to guessing the parameters or the use of
determination of the “optimal” value ofr by means of Eqs. Vvalues which were historically handed down. The difficulties
(21)—(23) together with ara posteriorivalidity check is still ~ of the analytical approximatio(88) at large values dfi are
a good approach. not a serious problem anyway, since in case of doubt one can
In any case, if one knows or at least has reasons t@ways go back to the full estimate.
suspect that the investigated system is susceptible to the de-
velopment of inhomogeneities, one should always be aware CKNOWLEDGMENTS
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